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A mathematical characterization of self-enforcing bilateral contracts is given. Contracts where 
both parties exercise some control over the quantity traded can sometimes be superior to 
contracts that rest control entirely with one side. Some qualitative characteristics of these 
contracts are given. 

1. Introduction 

The basic form of economic exchange is a bilateral relationship between 
buyer and seller. If economic conditions are common knowledge, there is no 
problem in principle to find the efficient quantity to trade. But if benefits are 
known only to the buyer and costs are known only to the seller a bargaining 
situation results. In such circumstances economic efftciency might be 
improved if a contract governing the transaction could be agreed upon in 
advance. Such a contract would give control of various aspects of the 
exchange to the two parties involved. This paper studies contracts of this 
nature. We examine the feasibility of implementing various agreements. 

One approach to this problem is to give control completely to one party . 
or the other. This is seen widely in practice as well as in theory.’ A price per 
unit may be fixed and the buyer can name his quantity after seeing the actual 
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benefits that are relevant. A more complex version presents the buyer with a 
non-linear price schedule.’ Alternatively, the supplier may be given control in 
a contract with a specified revenue function along which he can optimize. 

These solutions are fairly well understood. When the uncertainty is entirely 
or primarily on one side of the market they can duplicate the fully efficient 
solution - that is the quantity that would be traded in a full-information 
world. When the random influences impact both parties significantly, full 
efficiency is not attainable. The choice of which side should govern the 
contract is then dependent on the elasticity of benefits and costs, and on the 
distribution of the random parameters. 

The primary goal of this paper is to examine contracts that allow for 
mutual control. While these contracts do not have the ability to achieve the 
first-best, they may, in some cases, dominate one-sided governance. 

In the next section the basic model is set out. It is shown that feasible 
contracts lead to traded quantities which, viewed as functions of the random 
parameters, have to satisfy a certain partial differential equation. 

Section 3 examines the special case in which the contract is so arranged as 
to be equally beneficial to the two parties in all circumstances. This case 
allows us to restrict the partial differential equation in section 2, obtaining a 
second-order ordinary differential equation. Because this equation is non- 
linear and because its right-hand side diverges at some points, its solutions 
divide naturally into several different types. These are studied in sections 4 
and 5, and qualitative properties implied by them are presented in section 6. 

Numerical methods are used in section 7 to calculate various solutions 
whose properties are shown to accord with the theory. 

2. The model 

The basic structure of the model follows Weitzman (1974). There is a 
buyer, whose willingness to pay for the good is 

U(q) =+aqz + Eq, (1) 

where q is the quantity traded. The other party to the contract is the seller, 
whose reservation value for q is the negative of 

V(q) = +bq2 - 6q. 

Concavity requires that a and b be negative. 

All of the uncertainty in the model enters through the coefficients of the 
linear terms, E and S. It is useful to note at the outset that the etlicient 

‘Spence (1977). 
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quantity is that which maximizes U + V, 

q*(&, 6) = -(& - 6)/(a + b). (3) 

To insure that q* is positive we suppose that E > 6 with probability one. In 
order to use the methods of incentive compatibility, it is convenient to 
assume that (c,B) has a continuous bivariate distribution over a rectangle in 
R2. 

A contract is a pair of functions t,q which assign to each (a, 6) the 
monetary payment made by the buyer to the seller, t(e,6), and the quantity 
received by the buyer from the seller q(e,6). Given any contract and given the 
realized values of E and 6 the two players can be viewed as participants in a 
game where the strategies are their professed values of E and 6, E;& and their 
payoff functions are, respectively, 

and 

(4) 

(5) 

Viewed in this way, contracts are direct revelation mechanisms in the sense of 
Green-Laffont (1979) or Laffont-Maskin (1980). We will say that a contract 
is self-enforcing or incentive compatible if the true value of E and the true value 
of 6 are, respectively, dominant strategies in this game for the buyer and 
seller, respectively. If a contract were not self-enforcing, the value to the two 
players would have to be computed at the equilibria of the game. Multiple 
equilibria would typically arise. Little is known about this case. In this paper 
we examine self-enforcing contracts exclusively.3 Moreover, as a technical 
matter it is convenient to assume that q(., .) and t(., .) are twice 
continuously differentiable.4 

We now give a characterization of self-enforcing contracts. The optimal 
strategies for players whose true parameters are E and 2 are determined by 

the first-order conditions 

uq(r:, h)y,(t:, 6) + Cq,(&, 6) -t&C, 6) = 0, (6) 

and 

bq@, %,(e, 6) - &q6(s, 6) + t&, 6) = 0, (7) 

31t may indeed be the case that by using strategy spaces other than the real line, we can 
implement discontinuous q( ‘, .) which nevertheless have a lower welfare loss. This is beyond the 
scope of the present paper. 

&To be precise, differentiability at every point in the domain will be required. We do not 
consider discontinuous, piecewise differentiable or other weaker solution concepts. However, this 
assumption is slightly relaxed in section 5. 
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where subscripts denote partial differentiation. Incentive compatibility 
requires that these be identities in (E, 6) when evaluated at E=E and 6=& 

Differentiating (6) with respect to 6 and (7) with respect to E, we find 
(suppressing the arguments of all functions) 

WI,, + %+I, + %a - tad = 0, (8) 
and 

bqq,, + bq,q, - &I,, + raa = 0. (9) 

Using t,, = tdZ we can eliminate tsd from (8) obtaining 

((a + 44 + @ - 4)q,, + (a + b)q,q, = 0 (10) 

Eq. (10) is the fundamental partial differential equation of this theory of 
bilateral contracts. 

Note that any function of only one of the two variables will satisfy (10). 
This is another way of seeing that one-sided contract governance can be 
made quite flexible by choosing the non-linear price or revenue functions 
appropriately.5 The first-best given in (3), however, is unattainable through 
any self-enforcing scheme.6 

Before specializing and examining the nature of the solutions to (lo), which 
will be the subject of the rest of this paper, two further points should be 
made. The individuals’ second-order conditions must hold at each value of 
the parameters, and this entails some further constraints on the functions 
q(. , *) that can be implemented. For the buyer, we have that 

To express this as a constraint on 4, note that as (6) is an identity with E =E 
we can differentiate it with respect to E. Taking the result and subtracting it 
from (11) yields 

4,10. (12) 

Similarly, the seller’s second-order condition when combined with the tirst- 
order conditions for all 6 yields 

4as (13) 

%econd-order conditions for the individuals must be respected as constraints. See below. 
6This result is well known; see Green-Laffont (1979). 
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3. Solutions that divide the surplus evenly 

In this paper we examine the family of self-enforcing contracts that have 
the additional property of dividing the sum of the surpluses equally between 
the buyer and the seller for all realizations of the random parameters. We 
know that all self-enforcing contracts satisfy (10). In addition, this equal 
division property can be expressed as the equality of (4) and (5). 
Differentiating this identity with respect to E and using (6) gives us 

q(.% 4 = b + &@, 4 + (E - mL. (14) 

Differentiating it with respect to 6, using (7) and equating the result to (14) 
we obtain 

(CL + 4m + el + (6 - a= cl. (15) 

From (15) we see that either q is the first-best, in which case the bracketed 
expression is zero, or else qE +qg=O. But we already know that the first-best 
cannot be achieved in general, that is identically in any neighborhood of 
(E, 6). Thus, qe + qa=O almost-everywhere. Differentiating with respect to E 
and with respect to 6 and eliminating qEa we obtain the result that 

which is the wave-equation in R’ [see, e.g., Hellwig (1960, p. ll)]. Its 
solutions are 

q@, 6) = w 1(E + 6) + W& - 6), 

where wr and w2 are arbitrary functions in C2. However, from qE+qa=O we 
see that w1 must be a constant function. Therefore the equal division 
constraint is q(E, 6) = &E - 6), for some 4. 

Let us define 

x=--E---8, Y(x)~Y(&-~)+l+b)~(&-i5)+(&-~). (16) 

The basic partial differential equation (10) takes the form of the ordinary 
differential equation, 

Y’“Y+(1-Y)2=o. (17) 

The function Y has a straightforward economic interpretation, 

y = (a + WI - 4*), (18) 
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i.e., it is proportional to the deviation of the quantity resulting from the 
contract from the first-best quantity. The second-order conditions (12) and 
(13) impose the constraint 

!F=<l, (19) 

which, as we will see below, allows us to restrict the class of solutions to (17) 
corresponding to implementable contracts. The non-negativity q(. , a) 2 0 
implies 

Y 5.u. (20) 

according to the conventions (16). 

Eq. (17) is an interesting sort of differential equation for several reasons. It 
has one obvious family of solutions, namely, 

Y(x)=x+c, (21) 

for any real number c SO. In economic terms these are the trivial solutions 
for, using (16), one can see that they correspond to q(s, 6) = ~/(a+ b) - a 
completely inflexible and uncontingent contract. 

There are other solutions to (17), and it is on these that we shall focus. The 
difficulty in finding some of these solutions can be traced to the fact that it 
does not define a unique value of Y’ when !P = 0. As is well-known in the 
theory of differential equations, the existence and uniqueness of a solution of 
an equation of order n, given n initial conditions, is guaranteed in a 
neighborhood of the initial point only if the equation is Lipschitzian 
throughout such a neighborhood. The irregularity in this equation occurs at 
a particularly unfortunate value, Y = 0, which is precisely where 4 = q*. 

Because of this fact, we will have to discuss solutions other than those 
given by (21) in two separate cases: those where Y has one-sign throughout 
the range of x, and those where Y is zero for some x. These will be called 
one-signed and two-signed contracts, respectively, and are analyzed separately 
in sections 4 and 5. 

We are looking for solutions to (17) over the domain of x that could 
possibly arise. It is not necessary that the solution be extendable over the 
whole real line.’ We will see that the solutions other than (21) indeed have 
the character that they cannot be extended beyond a bounded interval. 

Let us consider, at first informally, the qualitative nature of solutions 
where Y has one sign. Suppose we are looking for a solution on [x0,x,] and 
that we set Y’(x,,)s 1, as required by the second-order conditions, and 

‘Indeed we have already assumed that (E, 6) lies in a rectangle in R*. 
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Y(x,)>O. From (17) we can see that Y”(x,,) must be negative. Therefore Y 
decreases further with x. At some x, Y’=O and Y is at a maximum; beyond 
this Y begins to decrease. In this region Y” is diverging towards -co 
because (Y’- 1)2 is growing and Y is going towards zero. Such a solution 
exists only on intervals where the upper endpoint is below the point where 
this degeneracy occurs. 

Fig. 1. Solutions with Y’(x,)i 1, Y(x,)>O, for two different values of Y’(x,,) 

The requirement that the solution exist throughout the range of x can be 
viewed as placing constraints on Y’(x,) and Y(x,). If, for example, the 
degeneracy were to occur before x1, then the value specitied for Y(x,) could 
bc increased. It is easy to see that the resulting trajectory would be everywhere 
higher and would have a degeneracy at a larger value of xi. In this way the 
domain of the solution can be extended. It can also be extended by raising 
Y’(x,), which has a qualitatively similar effect. 

4. One signed-solutions to (17) 

In order to obtain manageable expressions for the solution, which will 
eventually be obtained only by numerical methods, it is useful to convert (17) 
into a first-order equation. This can be done because (17) is autonomous - 
x does not appear explicitly. Let 

z(Y)= Y', (22) 

so that 

_=yLdzdy_dz AZ ._, 
dY’ 

dx dYdx dY dY (23) 
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Thus (17) can be rewritten as the following first-order equation for z: 

This equation is separable in z and Y and can be integrated to yield 

log Y+_ -log(l -z)+K, 

where K is a constant of integration. 

This can be rewritten using (22) 

K 
Y=-e -l/(1 -Y’) 

1-Y 

(24) 

(25) 

Thus (17) has been rewritten as a first-order equation, still autonomous, 
but rather non-linear in !P’. Such equations may be transformed’ via 
differentiation with respect to x, 

-KY 
y’=(1_y1)3 e-l’(‘-y’)Y”, 

or,9 using the change of variable, 

u(x) =& 
-1 

dv=(l _ Y)2 ‘J”‘dx, 

(27) 

we have 

dx= -Kve’dv. (29) 

Now (29) can be integrated on the left-hand side from x0, the lower endpoint 
of the interval on which we want a solution, up to x, and from u(xO) to u(x) 
on the right yielding 

or 

(x-x,,) = - K(u - l)e”l$b,, (30) 

x -x0 = - K(v(x) - 1) evCx) + K(u(x,) - l)e”(XO). (31) 

“See Ames (1968. ch. 2). 
“T\II< ~r;~llsl;,rmation involves dividing by Y, and at Y”=O, this is ill-defined. However. as 

Y’=O for only one value of x, this is not of consequence when the integration is performed to 
yield (32), below. 
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To simplify this further, we can use the definition of K in terms of Y and Y’, 
(28) together with the definition of v, (28), to write K in terms of Y(x) and 
r(x), 

or 

K = ul(x)( 1 - Y’(x))e l’(’ -y’(x)), (32) 

Kc _ y@)ie-"'l'. 
44 

(33) 

Since (33) is an identity in x we can use it twice in (31), evaluated at x and at 

x0> 

(34) 

or, 

or, 

using the definition of v, 

x-x0 = Y(x)(2 - Y’(x)) - Y(x,)(2 - Y’(xg)), 

finally, 

(35) 

y,(x) = 2 _ x - {x0 - WoM2 - Wxo))) 
Y(x) 

(36) 

Eq. (36) is a first-order differential equation, linear in ‘Y’ although non- 
linear in Y and x. Actually, it really describes a family of such equations 
because Y’(x,) as well as Y(x,) can be specified arbitrarily. 

However, although (36) specifies the evolution of Y( .) at points x where 
Y(x) #O, its non-linear solutions cannot be extended beyond a bounded 
interval. The extent of this domain of Y( .) is determined by the choice of 
Y(x,) and Y’(x,). Consider (3 1). Since K > 0 and v(x) < 0, the first term on the 
right-hand side is positive. Moreover, since for positively signed solutions v(x) 
converges to zero (from below) as x increases, the first 
x. Thus 

x -x0 5 K( 1 + (v(xo) - l)e”(XO)) 

serves to define the domain of x. Using (33) (at x0) to 
from (37) that 

term is decreasing in 

(37) 

eliminate K we have 

(x-x0)5 Y(xo)(Y(xo)-2 +(l - Y’(xo))eli(l-yl’(Xo))). (38) 

The implication of this restriction on the domain of Y( .) for the design of 
contracts is as follows: Given any joint distribution of (E,& we must choose 
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Y(x,) and Y’(.u,) so that X=&-C? satisfies (3X) with probability one. This 
constrains the expression in brackets in (36) and leads to pointwise higher 
solutions the larger the required domain. 

Finally, let us write eq. (36) in the form 

LX-X 
Y(x)=Z+.(x), (39) 

in which CI is a parameter, and in which the initial conditions are not given 
explicitly.” The solutions to this equation 
Indeed, (39) with or=0 can be written as 

Y’(x) - 1 Y(x) (Y’(x) - l)Y(x) 

Y(x)-- =Y(x)-x- (Y(x)-x)z ’ 

which upon integration yields 

Y(x)= -P&pexp 
Y(x) 

{ I Y(x)-x . 

This can be parameterized as 

x(u) = /I(24 + l)e-‘, y(u) = Y(x) = /lu e-’ 

can be parametrized explicitly. 

(40) 

(41) 

(42) 

Fig. 2. Graph of (43). 

“Note that (39) can be derived directly from (17) by writing (17) in the form 

1-2Y’(x)+(d/dx)Y(x)Y’(x))=O, 

which then easily gives (39). Our longer derivation has the advantage that the role of the initial 
conditions is made explicit throughout. The bounds (37) and (38) are utilized in the illustrative 
numerical computations in section 7. 
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where /I is a constant parameterizing class of solutions. 

The solutions are thus simple transformations of 

x(u)=&+ l)e-“, y(u) =ue-“. (43) 

Note that the domain x E[O, 1) is relevant for positive solutions and the 
domain x E [ - 1, 0] for negatively signed solutions. 

5. Two-signed solutions to (17) 

In the previous section we derived a parameterized expression for the 
solution of our fundamental equation (17). From a technical point of view 
the form (42) suggests that the class of two-signed solutions can be generated 
from it ‘gluing’ together a negative and a positive solution, defined on 
subsequent subintervals. [Compare also the graph of formula (43), fig. 2.1 To 
see whether this is possible it is necessary to analyze the behavior of a 
positive solution when one extends it backwards until Y+O. Using the 
parametric form (42) it is seen that the limit is obtained when u--r + 00, where 
/I>0 in the case of a positive solution. 

When u--r + co, we obtain from (42) the limits x-a, and Y+O. The next 
step is to consider the limiting values for the derivatives F(x), and ‘Y”(x). 
One easily computes the formulae 

Y”(x) =(dy/du) t(dx/du) = 1 -u-l -+l, (44) 

Y”(x)= -(1-Y’)2/Y=e”u-3-++co. (45) 

as u+ + co. For negative solutions these computations hold with p taken to 
have a negative value. 

In total we obtain the conclusion that, if in the parametric form (42) one 
sets identical values for the a parameter partly specifying the negative and 
positive solutions from their classes, then one can piece together such 
solutions to obtain a two-signed solution. This two-signed solution is of class 
C’, but somewhat surprisingly it does not possess the second derivative at 
the point x,, in which $(x0)=0, unless linear solutions (21) are being glued 
together. l1 However elsewhere in the domain the two-signed solution is 
twice continuously hifferentiable. Though this phenomenon violates our 
earlier requirement a little bit, we will consider the two-signed solutions in 
the next section. 

“Note that Y(x) Y”(x) + 0, as u--t + co, which in conjunction with the fact Y’(x) + 1 suggests that the 
fundamental equation (17) does not become absurd in the limiting case. 

J.Math- C 



182 J. Green and S. Honkapohja, Bilateral contracts 

6. Characteristics of the payment function 

In the preceding sections we have analyzed the nature of possible 
solutions to the fundamental equation (17) derived from (10). These results 
are important in that they permit a qualitative characterization of the cost 
function C(q,6) of the buyer and the revenue function R(q,&) of the seller with 
respect to the traded quantity q. 

Given a contract t=t(~, S), q =q(&, 6), we can, by utilizing the implicit 
function theorem, solve the latter to obtain ~=~(q,a), because qe>O by the 
second-order conditions. Substituting this to the former we obtain the cost 
function of the buyer C(q, 6) = t[~(q, 6), S]. By differentiating once 

and twice 

a2Gl, 4 2 

a42 

=t,,+t aE 

he)2 & a42 . 

(46) 

To evaluate (46) we have t, from (6), t,, obtained by differentiating (6), and 
compute 

In total we have the result 

(47) 

(48) 

the sign of which is in general uncertain. For the special case of solutions 
dependent on (e--b) it is possible to rewrite (48) in terms of the function Y 
which was analyzed in the preceding sections. The conclusion is that t[q,&l is 
convex (r&p. concave) in 4 whenever Y’>(resp. <)-h/a. 

A similar computation for the seller’s revenue function yields the result 

a 2R(4, 4 
a42 

=-b+;, (49) 

which in turn implies that t[q ; E] is convex (concave resp.) in q whenever 
Y’<(resp. >)-u/b. 

These results can be interpreted easily by noting that, for example, the 
convexity of C(q,6) in 4 means that the unit price for the buyer is rising, i.e., 
quantity premia appear. In the same vein, whenever C(q, 6) is concave in 4 the 
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contract stipulates quantity discounts, i.e., the unit price for the buyer is 
decreasing. 

This analysis can be conveniently related to the different types of solution 
Y of the basic differential equation (17). Consider first a positively signed 
solution discussed in section 4 above. For then YJ’ is first positive, but as 
x( = E - 6) increases it turns more and more negative which implies that R(q, E) 
is first convex but it eventually becomes concave. Therefore in these 
contracts the buyer faces quantity premia at low levels of the traded quantity 
but discounts appear at high volumes of trading. In section 7 numerical 
computations illustrate this phenomenon. For negatively signed contracts the 
conclusion is reversed, i.e., quantity discounts appear at low levels of trading. 

As shown in section 5, two-signed contracts are pieced from one-signed 
contracts on subintervals so that with them quantity discounts are present at 
both sufficiently low and high levels of trading, while in the intermediate 
range quantity premia are the rule. These features are illustrated in fig. 3. 

Fig. 3 

7. Numerical computations 

By virtue of the results in the last three sections a numerical computation 
of the solutions to (17) can be derived from the one-signed solutions over 
fixed intervals (x~,x,_) with the properties that 

In this section we examine some qualitative properties of these solutions. 



184 J. Green and S. Honkapohja, Bilateral contracts 

Though we are not concerned in obtaining optimal contracts our 
computations show the interesting feature that it is relatively easy to find a 
solution to (17) that is ‘almost’ the pointwise minimizer of Y throughout 
‘almost’ all of the domain of definition. Therefore, the calculations at the 
second stage are carried out for this particular solution. 

We now describe the numerical method used and present an illustrative 
calculation. Let the length of the interval over which we seek a solution be 
fixed at L=x_-x0. From (38) we have an implicit relationship between 
Y(Q) and !P’(x,) that must be satisfied if the solution is to be well-defined 
over this interval, 

Y(x,) 2 L/Y(x,)-2 +(l - Y(xO))el’(l-Y’(XO)). (50) 

Thus for fixed L we consider the one parameter family of solutions to (36) 
where Y’(x,) is fixed arbitrarily in (0,l) and Y(x,) is given by the solution to 
(50) with equality. A standard computer program for numerical integration 
was used to integrate the expression for Y(x) from x0 to x. 

Fig. 4 displays the results for various choices of Y’(x,,) when L = 10. The 
central feature of this simulation is that the solution obtained for !I?‘(x,)=O.9 
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is ‘almost’ the pointwise minimizer of the family of all solutions obtained for 
values of Y’(x,,) in steps of 0.02. Only for x-x0 6 0.2 or x-x,, 2 9.8 were any 
of the other solutions below this one. 

This result seems robust to the length of the interval and to step sizes of 
Y’(x,) used to construct the families of solutions. It is probably a good 
approximation to the ‘best’ one-signed solution over this interval for most 
distributions of x. 

We then computed the non-linear price and revenue functions that are 
implicit in the optimal contract, using this result as an approximation for the 
optimum. This computation was compatible with the 
the concavity properties of these functions. 

The numerical Y( .) obtained above was substituted 

t @ +(aY+a~+W(c,+ Y-(&-4) 
c 3 

Y(a + by 
2 

results of section 6 on 

into the expressions 

(51) 

t @ g)=(bY-b-%%+ ‘Y-@-4) 
6 3 

Y(a+b)2 ’ 

where c0 =x0 - Y(x,)(2- Y’(x,)). Both a and b were set at - 1. These 
partial derivatives were integrated numerically over the rectangle 
(E, 8)~([5,10] x [0,5]) so that, as required, E--6 E [0, lo]. The value of t(5,O) 
=0 was taken as a normalization without loss of generality. 

From this function t(e,d) we computed the price and revenue functions as 
follows. For each value of 6 and each 4 E ((5 -6)/2, (lo- 6)/2) we find the 
value of E so that - 1/2(Y(&-6)-E-6)=q. This gives us a function E(q, 6) 

whose interpretation is that it is the ‘announcement’ of E which, when 
combined with the given value of 6, would induce the given value of 4 to be 
exchanged under the contract Y. Finally, the total cost to the buyer of 
quantity C(g, 6), is defined by C(q, 6) = t(c(q, d), 6). The revenue functions of the 
seller facing a buyer whose announced parameter is E, R(q,&) is given 
symmetrically. 

Some of these cost and revenue functions are given in figs. 5 and 6. It is 
noteworthy that the quantity discount/quantity premia results of section 6 
are verified in this numerical construction. 

Because we cannot find the true optimum without knowing the 
distribution of x, and, more importantly, because the incentive compatible 
contracts we have studied here are constrained to divide the surplus evenly 
between the players in all circumstances, these numerical results should be 
viewed as merely illustrative. 
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